首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2291篇
  免费   184篇
  国内免费   273篇
化学   88篇
晶体学   3篇
力学   363篇
综合类   27篇
数学   1933篇
物理学   334篇
  2024年   4篇
  2023年   35篇
  2022年   9篇
  2021年   23篇
  2020年   43篇
  2019年   55篇
  2018年   50篇
  2017年   60篇
  2016年   49篇
  2015年   64篇
  2014年   94篇
  2013年   166篇
  2012年   69篇
  2011年   137篇
  2010年   125篇
  2009年   145篇
  2008年   163篇
  2007年   141篇
  2006年   159篇
  2005年   168篇
  2004年   112篇
  2003年   148篇
  2002年   108篇
  2001年   93篇
  2000年   93篇
  1999年   78篇
  1998年   62篇
  1997年   67篇
  1996年   52篇
  1995年   28篇
  1994年   25篇
  1993年   14篇
  1992年   8篇
  1991年   10篇
  1990年   7篇
  1989年   5篇
  1988年   14篇
  1987年   2篇
  1986年   2篇
  1985年   14篇
  1984年   12篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   8篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
排序方式: 共有2748条查询结果,搜索用时 62 毫秒
31.
We study automorphisms of the Hilbert scheme of n points on a generic projective K3 surface S, for any . We show that is either trivial or generated by a non‐symplectic involution and we determine numerical and divisorial conditions which allow us to distinguish between the two cases. As an application of these results we prove that, for any , there exist infinitely many admissible degrees for the polarization of the K3 surface S such that admits a non‐natural involution. This provides a generalization of the results of [7] for .  相似文献   
32.
33.
34.
35.
An asymptotic‐preserving (AP) scheme is efficient in solving multiscale problems where kinetic and hydrodynamic regimes coexist. In this article, we extend the BGK‐penalization‐based AP scheme, originally introduced by Filbet and Jin for the single species Boltzmann equation (Filbet and Jin, J Comput Phys 229 (2010) 7625–7648), to its multispecies counterpart. For the multispecies Boltzmann equation, the new difficulties arise due to: (1) the breaking down of the conservation laws for each species and (2) different convergence rates to equilibria for different species in disparate masses systems. To resolve these issues, we find a suitable penalty function—the local Maxwellian that is based on the mean velocity and mean temperature and justify various asymptotic properties of this method. This AP scheme does not contain any nonlinear nonlocal implicit solver, yet it can capture the fluid dynamic limit with time step and mesh size independent of the Knudsen number. Numerical examples demonstrate the correct asymptotic‐behavior of the scheme. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   
36.
《Comptes Rendus Mecanique》2014,342(10-11):583-594
In this paper we focus on WENO-based methods for the simulation of the 1D Quasi-Relativistic Vlasov–Maxwell (QRVM) model used to describe how a laser wave interacts with and heats a plasma by penetrating into it. We propose several non-oscillatory methods based on either Runge–Kutta (explicit) or Time-Splitting (implicit) time discretizations. We then show preliminary numerical experiments.  相似文献   
37.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
38.
Transpiration cooling using ceramic matrix composite materials is an innovative concept for cooling rocket thrust chambers. The coolant (air) is driven through the porous material by a pressure difference between the coolant reservoir and the turbulent hot gas flow. The effectiveness of such cooling strategies relies on a proper choice of the involved process parameters such as injection pressure, blowing ratios, and material structure parameters, to name only a few. In view of the limited experimental access to the subtle processes occurring at the interface between hot gas flow and porous medium, reliable and accurate simulations become an increasingly important design tool. In order to facilitate such numerical simulations for a carbon/carbon material mounted in the side wall of a hot gas channel that are able to capture a spatially varying interplay between the hot gas flow and the coolant at the interface, we formulate a model for the porous medium flow of Darcy–Forchheimer type. A finite‐element solver for the corresponding porous medium flow is presented and coupled with a finite‐volume solver for the compressible Reynolds‐averaged Navier–Stokes equations. The two‐dimensional and three‐dimensional results at Mach number Ma = 0.5 and hot gas temperature THG=540 K for different blowing ratios are compared with experimental data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
39.
This paper presents an efficient procedure for overcoming the deficiency of weighted essentially non‐oscillatory schemes near discontinuities. Through a thorough incorporation of smoothness indicators into the weights definition, up to ninth‐order accurate multistep methods are devised, providing weighted essentially non‐oscillatory schemes with enhanced order of convergence at transition points from smooth regions to a discontinuity, while maintaining stability and the essentially non‐oscillatory behavior. We also provide a detailed analysis of the resolution power and show that the solution enhancements of the new method at smooth regions come from their ability to render smoothness indicators closer to uniformity. The new scheme exhibits similar fidelity as other multistep schemes; however, with superior characteristics in terms of robustness and efficiency, as no logical statements or mapping function is needed. Extensions to higher orders of accuracy present no extra complexity. Numerical solutions of linear advection problems and nonlinear hyperbolic conservation laws are used to demonstrate the scheme's improved behavior for shock‐capturing problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
40.
In the present paper, we deal with the complex Szász-Durrmeyer operators and study Voronovskaja type results with quantitative estimates for these operators attached to analytic functions of exponential growth on compact disks. Also, the exact order of approximation is found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号